High-temperature alkali vapor cells with antirelaxation surface coatings
نویسندگان
چکیده
Antirelaxation surface coatings allow long spin relaxation times in alkali-metal cells without buffer gas, enabling faster diffusion of the alkali atoms throughout the cell and giving larger signals due to narrower optical linewidths. Effective coatings were previously unavailable for operation at temperatures above 80 °C. We demonstrate that octadecyltrichlorosilane OTS can allow potassium or rubidium atoms to experience hundreds of collisions with the cell surface before depolarizing, and that an OTS coating remains effective up to about 170 °C for both potassium and rubidium. We consider the experimental concerns of operating without buffer gas and with minimal quenching gas at high vapor density, studying the stricter need for effective quenching of excited atoms and deriving the optical rotation signal shape for atoms with resolved hyperfine structure in the spin-temperature regime. As an example of a high-temperature application of antirelaxation coated alkali vapor cells, we operate a spin-exchange relaxation-free atomic magnetometer with sensitivity of 6 fT / Hz and magnetic linewidth as narrow as 2 Hz. © 2009 American Institute of Physics. doi:10.1063/1.3236649
منابع مشابه
Investigation of antirelaxation coatings for alkali-metal vapor cells using surface science techniques.
Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of antirelaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10 000 collisions with the walls of its container without depolarizing, but the detail...
متن کاملMethod for characterizing self-assembled monolayers as antirelaxation wall coatings for alkali vapor cells
We describe a method for characterizing self-assembled monolayers SAMs in terms of their performance as antirelaxation wall coatings for alkali atom vapor cells. A combination of initial surface analysis and subsequent laser spectroscopy is used to provide insight into the quality of the coating, as well as its performance under the exposure to alkalis as it occurs, for example, when used in ap...
متن کاملEffect of Temperature and Gas Flux on the Mechanical Behavior of TiC Coating by Pulsed DC Plasma Enhanced Chemical Vapor Deposition(TECHNICAL NOTE)
There are many factors such as voltages, duty cycle, pressure, temperatures and gas flux in coatings process that were effective in changing coatings characteristic. In this paper in plasma enhanced chemical vapor deposition (PECVD) technique, temperature and gas flux are two important variants that affecting the coatings structure and mechanical properties. All TiC coating deposited on a hot...
متن کاملMD-Simulation of Duty Cycle and TaN Interlayer Effects on the Surface Properties of Ta Coatings Deposited by Pulsed-DC Plasma Assisted Chemical Vapor Deposition
In this work, molecular dynamics (MD) simulations were employed to investigate the effects of duty cycle changes and utilization of tantalum nitride interlayer on the surface roughness and adhesion of Ta coating deposited by pulsed-DC plasma assisted chemical vapor deposition. To examine the simulation results, some selected deposition conditions were experimentally implemented and characterize...
متن کاملEnhanced magnetic resonance signal of spin-polarized Rb atoms near surfaces of coated cells
We present a detailed experimental and theoretical study of edge enhancement in optically pumped Rb vapor in coated cylindrical pyrex glass cells. The Zeeman polarization of Rb atoms is produced and probed in the vicinity (∼10−4 cm) of the cell surface by evanescent pump and probe beams. Spin-polarized Rb atoms diffuse throughout the cell in the presence of magnetic field gradients. In the pres...
متن کامل